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J.  Phys. A: Math. Gen. 19 (1986) L5-L7. Printed in Great Britain 

LETTER TO THE EDITOR 

On the completeness of certain sets of functions in Lz(O, 00) 

E R Davidsont and J Katriel 
Department of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel 

Received 24 October 1985 

Abstract. The set of L2(0 ,  a) functions {exp(--f[rP)r7("+m); n = 0, 1 , .  . .}, which is known 
to be complete for p = 1, y = 2, is shown to be incomplete for all O <  2p < y and complete 
for all 0 < y s 2p. 

The properties of infinite sets of linearly independent square integrable functions are 
of enormous importance in the context of obtaining approximations to functions such 
as the bound state wavefunctions in quantum mechanics. That an arbitrary set of 
functions of this type does not necessarily form a complete set is well known. On the 
other hand, necessary and sufficient conditions for completeness which can be applied 
to arbitrary situations d o  not exist. A completeness discussion of the existing body of 
knowledge in this area, with a special emphasis on quantum mechanical applications, 
is presented in a series of articles by Klahn and Binge1 (1977a, b, c) and Klahn (1981). 
Two sets of functions for which concrete results are available are the set of powers 
{x*'; i = 1,2,  . . .}, which form a complete set in O C  x < 1 if and only if A ,  is a monotoni- 
cally increasing set, A I  > -4 and 2 ,  A;' =CO (Muntz's theorem, cf Kaczmarz and 
Steinhaus (1935)) and the non-harmonic Fourier series, consisting of {exp(ih,t); n = 
0, 1,2,  . . .} which form complete sets on -T < t < T if and only if / A ,  - n /  <t for all n 
(Kadec's 4 theorem (Young 1980)). For the set of integers, A, = n, the completeness 
of {x";  n = 0, 1, . . .} is the Weierstrass approximation theorem and the completeness 
of {exp(int); n = 0,1, . . .} is the Fourier expansion theorem. Thus the Muntz and Kadec 
theorems are statements about the stability of the Weierstrass and Fourier sets with 
respect to 'sufficiently small' perturbations of the integers. Stability is used in the 
present context to indicate the property that sets sufficiently close to a given complete 
set are complete as well (Young 1980, p 37). 

We note in passing that not all sets of powers which are complete under Muntz's 
theorem are equally efficient from the point of view of their rate of convergence. This 
is treated by the Jackson theorem, which, in the extended form discussed by Newman 
(1973), states that if A,,, - A ,  S 2 for (almost) all i, the rate of convergence of the power 
series approximation to a function defined in [0, 11 is l /n ,  becoming slower when the 
powers are more thinly spread. 

Our purpose in the present letter is to discuss the completeness of certain commonly 
employed sets of square integrable functions in L'(0, CO). Although most of the results 
are available in the mathematical literature, their relevance to computational quantum 
mechanics has been largely ignored. 

t Permanent address: Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA. 
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Stieltjes, in a memoir discussed by Bore1 (1928), investigated the extent to which 
an essentially positive function f( U )  (0 S U < CO) is determined by its moments 

r m  
C,  = J f(u)u" du n =o, 1 , 2 , .  . . . 

0 

He pointed out that there exist functions ~ ( u )  for which 

lom cp(u)u" du = O  n = 0 , 1 , 2 ,  ... 

which means that f (u )  and f (u)+cp(u)  have the same set of moments. One such 
function, given by Stieltjes, is 

cp(  U )  = exp(-u") sin(u") with a =a .  
Hamburger (cf Freud 1971) pointed out that the above result holds for any O <  a <f. 

Let us consider the set { c p ,  = exp(--f(rP)rY'"+a'; n = 0 , 1 , 2 , .  . .}. Certain special 
cases, such as P = 1, y = 1,  a > -1 (Szego 1939) and P = 1, y = 2, a 3 0 (Klahn and 
Bingel 1977b) are well known to be complete in L2(0, CO). Let us also consider the set 
{U, =exp(-f(rP)rYP sin(gkra)/r; k > O } .  Note that both cp. and 9, are square 
integrable. 

Now 

Znp = lom cp,U,, d r =  -1m e ~ p [ - - 5 r ~ ( l + i k ) ] r ~ ' " + ~ + * ) - ~  d r. 

Defining x = 6rP we obtain 

(see also equation 5,  in § 3.944 of Gradshteyn and Ryzhik (1980)). Clearly, if ( 1  +ik)Y/P 
is real, then I,,, = O  for all values of n and p .  In that case each member of {cp , }  is 
orthogonal to each member of {I&}, which means that neither set is complete in Lz(O, CO). 

Now, 1 + ik = ( 1  + k2)'/' ei' where 4 = tan-'(k). Since 0 < k < CO, 0 < 4 < ~ / 2 .  
Therefore, Znp will vanish if exp(i4ylP)  is real, i.e. + y / P  = mn where m is a positive 
integer. 

For m = 1 it follows that a value of 4 in the range O <  4 < 7r/2 exists provided that 
0 < P /  y < f which means that for 0 < 2P < y the set (40,) is incomplete. Higher values 
of m give no additional information. 

To determine the properties of { c p , }  for O <  y s 2 P  we note that 
{exp(-f&r)r2(n+u); n = 0, 1 , 2 . .  .} is known to be complete (Klahn and Bingel 1977b). 
This set corresponds to P = 1 and y = 2. Note that, by the transformation used in the 
evaluation of the integral, equation (2), it follows that all sets of the form 
{exp(-f~r1'2)rn+a; n = 0 , 1 , 2 . .  .} are complete. 

Consider a set of the form {exp(-~(rP~)r"+"; n = 0, 1, . . .}. For P o < ;  this set was 
shown to be incomplete, whereas for Po = 4 it is complete. Assume that for some Po> f 
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the set is incomplete. This means that a square integrable function, g ( r ) ,  exists, such 
that 

loa g( r )  exp( -$@po)r"+" d r  = 0 (3) 

for all n. 

is square integrable if g ( r )  is also. Furthermore, from equation (3) it follows that 
Let g'(r)  = g ( r )  exp[te(r'"-rPo)], (po>t) .  Since for r + m  ( r 1 ' 2 - r p o ) +  --CO, g'(r) 

JOm g ( r )  exp(--ferl/2)r"+" d r  = 0 

for all n. This is in contradiction to the fact that {exp( - f & r l / 2 ) r " + a }  is complete. Thus, 
{exp(-f&')r"'"; n = 0 , l  . . .} is complete for all p a$. By the transformation men- 
tioned above it follows that {exp(-&P)r'(n+a)} is complete whenever 2p * y > 0. 

Consider the set { o ' / ~ (  r ) r ' ;  i = 0, 1 . , .} and assume that a function g( r )  exists, for 
which 1; w " 2 ( r ) r ' g ( t )  dr  = 0 for all i. Any g ( r )  = w 1 / 2 G - - 1 / 2  g ( r )  which is square 
integrable corresponds to an incomplete set { G l / 2 r i } .  g ' (r)  is square integrable if w / G  
is bounded from above (for all r ) .  Thus for w1/*=exp(-irP)(p < t )  &'/* can be of 
the form G1l2 = exp(-f(r)) where f( r )  < r p .  Thus any weight of the form = 
exp( -f( r ) )  with f( r )  < r 1 l 2  corresponds to an incomplete set {exp( -f( r ) ) r n }  over 
0 G r < CO. Closely related ideas were discussed by Stieltjes, as presented by Borel 
(1978), in the context of the moment problem referred to above. 

These results are in interesting contrast with Muntz's theorem since, according to 
the latter {x'"; n =0, 1 , 2 . .  .} is complete (in O<x< 1) for any y>O. The not so 
intuitively obvious nature of this contrast is a sobering example of where the naive 
commonsense we usually feel confortable with can go astray. 

Yet another contrast between a finite interval and an infinite one involves the fact 
that over a finite interval any set { W ( X ) " ~ X " }  is complete in L2, where w ( x )  is a weight 
function which is only assumed to be positive (almost everywhere) and integrable 
(ErdClyi 1953). 
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